Abstract

As smartphone usage has become increasingly prevalent in our society, so have rates of depression, particularly among young adults. Individual differences in smartphone usage patterns have been shown to reflect individual differences in underlying affective processes such as depression (Wang et al., 2018). In the current study, a positive relationship was identified between smartphone screen time (e.g., phone unlock duration) and resting-state functional connectivity (RSFC) between the subgenual cingulate cortex (sgCC), a brain region implicated in depression and antidepressant treatment response, and regions of the ventromedial/orbitofrontal cortex (OFC), such that increased phone usage was related to stronger connectivity between these regions. This cluster was subsequently used to constrain subsequent analyses looking at individual differences in depressive symptoms in the same cohort and observed partial replication in a separate cohort. Similar analyses were subsequently performed on metrics of circadian rhythm consistency showing a negative relationship between connectivity of the sgCC and OFC. The data and analyses presented here provide relatively simplistic preliminary analyses which replicate and provide an initial step in combining functional brain activity and smartphone usage patterns to better understand issues related to mental health. Smartphones are a prevalent part of modern life and the usage of mobile sensing data from smartphones promises to be an important tool for mental health diagnostics and neuroscience research.

Highlights

  • Smartphone usage has become nearly ubiquitous in daily life at a time when depression rates are concurrently rising, among college students

  • resting-state functional connectivity (RSFC) between the subgenual cingulate cortex, a region previously implicated in depression, and nearby ventral prefrontal regions, was strongly related to unlock duration, such that more connectivity was associated with more screen time, which has been implicated as being related to self-reported depressive symptoms

  • An exploratory analysis in Cohort 1 of the correlation between unlock duration and subgenual cingulate cortex (sgCC) seedmaps identified a large cluster which extended from the anterior caudate to medial frontal orbitofrontal cortex (OFC) and dorsally to medial prefrontal cortex, a result which was replicated in Cohort 2 with a smaller voxel extent, even though the sampling rate for screen time was greatly reduced, reducing our sensitivity to pick up individual differences in phone usage for this cohort

Read more

Summary

Introduction

Smartphone usage has become nearly ubiquitous in daily life at a time when depression rates are concurrently rising, among college students. Smartphones contain a variety of sensors that can allow researchers to passively measure various behaviors of the phone’s user. Previous research has linked smartphone usage to self-reported depressive symptoms (Matar and Jaalouk, 2017; Twenge et al, 2018; Wang et al, 2018). Is to provide a proof-of-concept for linking passive mobile smartphone sensing technologies to brain connectivity measures that have been linked to self-reported depressive symptoms. Is to identify preliminary links between a key behavior inferred from sensing (e.g., smartphone screen time or circadian rhythm consistency) and brain connectivity metrics. Fourth, is to briefly describe a variety of methods which could be used to combine results across these various data types in the future

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call