Abstract
The utilization of data-driven methods in chemical process modeling has been extensively acknowledged due to their effectiveness. However, with the increasing complexity and variability of chemical processes, predicting and warning of anomalous conditions have become challenging. Extracting valuable features and constructing relevant warning models are critical problems that require resolution. This research proposed a novel fused method that integrates K-means density-based spatial clustering of applications with noise (DBSCAN) clustering and bi-directional long short-term memory multilayer perceptron (Bi-LSTM-MLP) to enable early warning of abnormal conditions in chemical processes. The paper applied the proposed method to analyze the early warning using actual process data from Eastman Tennessee and the atmospheric pressure reduction unit as an example. In the TE model and example, the root mean square error (RMSE) of this method is 0.006855 and 0.052546, respectively, which is quite low when compared to other methods. The experimental results confirmed the effectiveness of our approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.