Abstract

Forest structural parameters are key indicators for forest growth assessment, and play a critical role in forest resources monitoring and ecosystem management. Terrestrial laser scanning (TLS) can obtain three-dimensional (3D) forest structures with ultra-high precision without destruction, whereas some shortcomings such as non-portability and cost-consuming can limit the quick and broad acquisition of forest structure. Structure from motion (SfM) and backpack laser scanning (BLS) technology have the advantages of low-cost and high-portability while obtaining 3D structure information of forests. In this study, the high-overlapped images and the BLS point cloud, combined with the point cloud registration and individual tree segmentation to extract the forest structural parameters and compared with the TLS for assessing the accuracy and efficiency of low-cost SfM and portable BLS point clouds. Three plots with different forest structural complexity (coniferous, broadleaf and mixed plot) in the northern subtropical forests were selected. Firstly, portable photography camera, BLS and TLS were used to acquire 3D SfM and LiDAR point clouds, and spatial co-registration of different-sourced point cloud datasets were carried out based on the understory markers. Secondly, the point clouds of individual tree trunk and crown were segmented by the comparative shortest-path algorithm (CSP), and then the height and position of individual tree were extracted based on the tree crown point cloud. Thirdly, the trunk diameter at different heights were calculated by point cloud slices using the density-based spatial clustering of applications with noise (DBSCAN) algorithm, and combined with the stem curve of individual tree which was constructed using four Taper equations to estimate the individual tree volume. Finally, the extraction accuracy of forest structural parameters based on SfM and BLS point clouds were verified and comprehensively compared with field-measured and TLS data. The results showed that: (1) the individual tree segmentation based on SfM and BLS point clouds all performed quite well, among which the segmentation accuracy (F) of SfM point cloud was 0.80 and the BLS point cloud was 0.85; and (2) the accuracy of DBH and tree height extraction based on the SfM and BLS point clouds in comparison with the field-measured data were relatively high. The root mean square error (RMSE) of DBH and tree height extraction based on SfM point cloud were 2.15 cm and 4.08 m, and the RMSE of DBH and tree height extraction based on BLS point cloud were 2.06 cm and 1.63 m. This study shows that with the adopted image capture method, terrestrial SfM photogrammetry can be applied quite well in extracting DBH.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call