Abstract

Antimicrobial peptides (AMPs) are promising candidates for the development of new antibiotics due to their broad-spectrum activity against a range of pathogens. However, identifying AMPs through a huge bunch of candidates is challenging due to their complex structures and diverse sequences. In this study, we propose SenseXAMP, a cross-modal framework that leverages semantic embeddings of and protein descriptors (PDs) of input sequences to improve the identification performance of AMPs. SenseXAMP includes a multi-input alignment module and cross-representation fusion module to explore the hidden information between the two input features and better leverage the fusion feature. To better address the AMPs identification task, we accumulate the latest annotated AMPs data to form more generous benchmark datasets. Additionally, we expand the existing AMPs identification task settings by adding an AMPs regression task to meet more specific requirements like antimicrobial activity prediction. The experimental results indicated that SenseXAMP outperformed existing state-of-the-art models on multiple AMP-related datasets including commonly used AMPs classification datasets and our proposed benchmark datasets. Furthermore, we conducted a series of experiments to demonstrate the complementary nature of traditional PDs and protein pre-training models in AMPs tasks. Our experiments reveal that SenseXAMP can effectively combine the advantages of PDs to improve the performance of protein pre-training models in AMPs tasks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call