Abstract

As rice paddies are widespread sources of water pollution in the agricultural regions of the Asian monsoon area, a mechanistic understanding of nutrient loss from paddies is critical for water quality management. A 2-year experiment was conducted in a typical monsoon-affected rice field to improve our understanding of the impacts of rainfall and agricultural management practice on nitrogen (N) and phosphorus (P) loss. Samples of paddy drainage water were collected during rainfall events (n = 25) and analyzed for total N (T-N) and total P (T-P) concentrations. The impacts of rainfall (amount, duration, and intensity) and agricultural management practice (transplanting and fertilization) on the event mean concentration (EMC) and loss of nutrient were assessed using regression analyses. The results showed that T-N and T-P concentrations were affected by agricultural practice; meanwhile, loss of T-N and T-P was correlated with rainfall characteristics. Specifically, the EMC of T-N but T-P was negatively (p < 0.001) correlated with the number of days after agricultural practice in both years, which likely represents a decrease in nutrient availability in paddy water over time. Loss of T-N and T-P was positively (p < 0.01) correlated with rainfall amount, and this suggests that the rainfall-runoff process is a key driver of nutrient loss in the study area. Our results suggest that rainfall amount and days after transplanting need to be taken into account when estimating nutrient loss from rice paddies in monsoon regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call