Abstract

To test some predictions of the spur model of positronium (Ps) formation, positron lifetime studies were made of the following binary organic mixtures: (a) carbondisulphide mixtures with n-tetradecane, n-hexane, isooctane, neopentane, and tetramethylsilane (TMS); (b) neopentane mixtures with methanol, ethanol, cyclohexanol, and methylcyclohexane; (c) cis-2-butene/trans-2-butene, and benzene/ethanol. The results were in agreement with the model. A minimum in the Ps yield versus CS 2 concentration, explained as being caused by electron localization on CS 2 at low and delocalization on several CS 2 molecules at higher CS 2 concentration, depended on the electron work function V o of the solvent. This minimum was pronounced (shallow or absent) at high (low) V o. Solvation of electrons and positrons in alcohol clusters strongly influenced the Ps yield for the neopentane mixtures. The Ps yield was higher in cis- than in trans-2-butene. The Ps formation process in polar liquids is discussed. Experiment facts do not preclude that Ps is also formed by the encounter pair process of fully solvated particles in the positron spur.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.