Abstract

Detailed comparison of the molecular structures of [1,2-μ-(C4H4)-3,3,3-(CO)3-3,1,2-closo-RuC2B9H9] (1) and [1,2-μ-(C4H6)-3,3,3-(CO)3-3,1,2-closo-RuC2B9H9] (2) reveals evidence for an Enhanced Structural Carborane Effect in 1 arising from the involvement of the cage pπ orbitals in the exopolyhedral ring to some degree. A minor co-product in the synthesis of 2 is [η-{1,2-μ-(C4H6)}-3,3-(CO)2-3,1,2-closo-RuC2B9H9] (3). Compounds 2 and 3 are readily interconverted, since heating 2 to reflux in THF or reaction with Me3NO affords 3 which readily reacts with CO to regenerate 2. The η-ene bonding in 3 is also displaced by PMe3, P(OMe)3 and t-BuNC to yield [1,2-μ-(C4H6)-3,3-(CO)2-3-PMe3-3,1,2-closo-RuC2B9H9] (4), [1,2-μ-(C4H6)-3,3-(CO)2-3-P(OMe)3-3,1,2-closo-RuC2B9H9] (5) and [1,2-μ-(C4H6)-3,3-(CO)2-3-t-BuNC-3,1,2-closo-RuC2B9H9] (6), respectively. Structural studies of 4-6, focussing on the Exopolyhedral Ligand Orientation of the {Ru(CO)2L} fragment relative to the C2B3 carborane face, are discussed in terms of the structural trans effects of PMe3, P(OMe)3 and t-BuNC relative to that of CO. An improved synthesis of [1,2-μ-(C6H4)2-1,2-closo-C2B10H10], "biphenylcarborane", is reported following which the first transition-metal derivatives of this species, [1,2-μ-(C6H4)2-3-Cp-3,1,2-closo-CoC2B9H9] (7) and [1,2-μ-(C6H4)2-3,3,3-(CO)3-3,1,2-closo-RuC2B9H9] (8), are prepared. Comparisons of the structures of 7 and 8 with the corresponding benzocarborane derivatives [1,2-μ-(C4H4)-3-Cp-3,1,2-closo-CoC2B9H9] and 1, respectively, suggest that Clar's rule for aromaticity can be applied to polycyclic aromatic hydrocarbons fused onto carborane cages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.