Abstract

Recognized as important interstellar constituents, polycyclic aromatic hydrocarbons (PAHs) have been intensively studied in astrochemistry and their spectroscopy, thermodynamics, dynamics, and fragmentations are now amply documented. There exists typical alternatives to the ground-state regular planar structures of PAHs, as long as they bear internal energies in the range 1–10eV. Resulting from intramolecular rearrangements, such high-lying minima on the potential-energy surfaces should be taken into consideration in the studies of PAH processing in astrophysical conditions. Resting upon DFT calculations mainly performed on two emblematic PAH representatives, coronene and pyrene, in their neutral and mono- and multi-cationic states, this second survey addresses the following alternatives: (1) opened forms containing ethynyl or 2-butynyl groups, (2) vinylidene isomers, in which phenanthrene patterns are reorganized into dibenzofulvene ones, (3) “twisted” forms, where external CHCH bonds can be partly twisted, and (4) bicyclobutane forms, in which the latter are integrated in saturated bicyclic forms. A few scenarios for elimination of fragments H, H2, C2H2 and C2H4 are explored. As far as possible, familiar concepts of organic chemistry, such as aromaticity or Clar's rules, are invoked for interpretations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.