Abstract

Extensive research in the behavioral sciences has addressed people's ability to learn stationary probabilities, which stay constant over time, but only recently have there been attempts to model the cognitive processes whereby people learn-and track-nonstationary probabilities. In this context, the old debate on whether learning occurs by the gradual formation of associations or by occasional shifts between hypotheses representing beliefs about distal states of the world has resurfaced. Gallistel et al. (2014) pitched the two theories against each other in a nonstationary probability learning task. They concluded that various qualitative patterns in their data were incompatible with trial-by-trial associative learning and could only be explained by a hypothesis-testing model. Here, we contest that claim and demonstrate that it was premature. First, we argue that their experimental paradigm consisted of two distinct tasks: probability tracking (an estimation task) and change detection (a decision-making task). Next, we present a model that uses the (associative) delta learning rule for the probability tracking task and bounded evidence accumulation for the change detection task. We find that this combination of two highly established theories accounts well for all qualitative phenomena and outperforms the alternative model proposed by Gallistel et al. (2014) in a quantitative model comparison. In the spirit of cumulative science, we conclude that current experimental data on human learning of nonstationary probabilities can be explained as a combination of associative learning and bounded evidence accumulation and does not require a new model. (PsycInfo Database Record (c) 2023 APA, all rights reserved).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.