Abstract
To determine how MDP interacts with liposomes, the chemical shifts of dipalmitoylphosphatidylcholine (DPPC)/MDP and dilauroylphosphatidylethanolamine (DLEA)/cholesterol (CS)/MDP liposomes were studied by NMR spectroscopy using a D2O buffer solution at pH 7.0 as a model for biological membranes. Proton chemical shifts of MDP enhanced shielding in DPPC liposomes together with an increase in the mobility of DPPC. However, MDP signals were not observed in DLEA/CS liposomes due to saturation. It is known that an ionized chemical does not lead to increased permeability of cell membranes composed of a lipid bilayer. However, MDP, which is ionized at pH 7.0, had a large interaction with the liposome systems. This appeared to arise from hydrophobic interaction between deca methylene groups of MDP and acyl chains of phospholipid.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have