Abstract

The shape of infrared stimulated luminescence signals (IRSL) from feldspars has been the subject of numerous studies in the field of luminescence dating. Specifically linearly modulated IRSL signals (LM-IRSL) are commonly assumed to consist of several first order components corresponding to distinct optical stimulation cross sections. This paper models the shape of LM-IRSL signals using a recently proposed kinetic model, which describes localized electronic recombination in donor–acceptor pairs of luminescent materials. Within this model, recombination is assumed to take place via the excited state of the donor, and nearest-neighbor recombinations take place within a random distribution of centers. The model has been used previously successfully to describe both thermally and optically stimulated luminescence (TL, OSL). This paper shows that it is possible to obtain approximate solutions for the distribution of donors in the ground state as a function of two variables, time and the distance between donors and acceptors. Approximate expressions are derived for several possible modes of optical and thermal stimulation, namely TL, OSL, linearly modulated OSL (LM-OSL), LM-IRSL and isothermal TL (ITL). Numerical integration of these expressions over the distance variable yields the distribution of remaining donors at any time t during these experimental situations. Examples are given for the derived distributions of donors in each experimental case, and similarities and differences are pointed out. The paper also demonstrates how LM-IRSL signals in feldspars can be analyzed using the model, and what physical information can be extracted from such experimental data. The equations developed in this paper are tested by fitting successfully a series of experimental LM-IRSL data for Na- and K-feldspar samples available in the literature. Finally, it is shown that the equations derived in this paper are a direct generalization of an equation previously derived for the case of ground state tunneling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call