Abstract
This paper presents Monte Carlo simulations of tunneling recombination in random distributions of defects. Simulations are carried out for four common luminescence phenomena in solids exhibiting tunneling recombination, namely continuous wave infrared stimulated luminescence (CW-IRSL), thermoluminescence (TL), isothermal thermoluminescence (iso-TL) and linearly modulated infrared stimulated luminescence (LM-IRSL). Previous modeling work has shown that these phenomena can be described by the same partial differential equation, which must be integrated numerically over two variables, the elapsed time and the donor-acceptor distance. We here present a simple and fast Monte Carlo approach which can be applied to these four phenomena, and which reproduces the solution of the partial differential equation, without the need for numerical integrations. We show that the method is also applicable to cases of truncated distributions of nearest neighbor distances, which characterize samples that underwent multiple optical or thermal pretreatments. The accuracy and precision of the Monte Carlo method are tested by comparing with experimental data from several feldspar samples.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.