Abstract

The activities of the following enzymes in soybean roots were determined at early times after infection of the roots with zoospores of an incompatible or a compatible race of Phytophthora megasperma f.sp. glycinea: dimethylallyl-diphosphate : 3,6a,9-trihydroxypterocarpan dimethylallyltransferase (prenyltransferase), an enzyme specific for glyceollin biosynthesis; NADPH-cytochrome reductase and hydroxymethylglutaryl-CoA reductase, enzymes related to the glyceollin pathway; and isocitrate dehydrogenase. Already at 4 h after infection there was a higher activity of the prenyltransferase in the incompatible interaction than in the compatible interaction, and enzyme activity in the incompatible interaction increased considerably between 4 and 8 h after infection. In the compatible interaction prenyltransferase activity was only slightly higher than in uninfected roots. The activity of the other enzymes in infected roots was not significantly different from that in the uninfected roots. No qualitative differences could be detected between the two-dimensional patterns of unlabelled proteins or proteins labelled with L-[35S]methionine of infected and uninfected roots at early times after infection. We conclude from these and earlier results (A. Bonhoff et al. (1986) Arch. Biochem. Biophys. 246, 149-154) that infection of the soybean roots with an incompatible race of the fungus leads to selective induction of the phytoalexin pathway and presumably to induction of other as yet unknown defense mechanisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.