Abstract
Our contribution in this paper is to propose an iterative algorithm which does not require prior knowledge of operator norm and prove strong convergence theorem for approximating a solution of split common fixed point problem of demicontractive mappings in a real Hilbert space. So many authors have used algorithms involving the operator norm for solving split common fixed point problem, but as widely known the computation of these algorithms may be difficult and for this reason, authors have recently started constructing iterative algorithms with a way of selecting the step-sizes such that the implementation of the algorithm does not require the calculation or estimation of the operator norm. We introduce a new algorithm for solving the split common fixed point problem for demicontractive mappings with a way of selecting the step-sizes such that the implementation of the algorithm does not require the calculation or estimation of the operator norm and then prove strong convergence of the sequence in real Hilbert spaces. Finally, we give some applications of our result and numerical example at the end of the paper.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have