Abstract
Improvement of product performance, efficiency, and reliability is a major concern of experts, scientists, and technologists dealing with the dynamics of water conveying nanoparticles on objects with nonuniform thickness either coated or sprayed with the catalyst. However, little is known on the significance of quartic autocatalysis as it affects the dynamics of water conveying alumina and cupric nanoparticles. In this study, comparative analysis between the dynamics of water conveying 29 nm CuO and 47 nm $$\hbox {Al}_2\hbox {O}_3$$ on an upper horizontal surface of a paraboloid of revolution is modeled and presented. In the transport phenomena, migration of nanoparticles due to temperature gradient, the haphazard motion of nanoparticles, and diffusion of motile microorganisms were incorporated into the mathematical models. Due to the inherent nature of the thermophysical properties of the two nanofluids, viscosity, density, thermal radiation, and heat capacity of the two nanofluids were incorporated in the mathematical model. The nonlinear partial differential equations that model the transport phenomenon were transformed, non-dimensionalized and parameterized. The corresponding boundary value problems were converted to an initial value problem using the method of superposition and solved numerically. The concentration of the catalyst increases significantly with buoyancy at a larger magnitude of space-dependent internal heat source in the flow of 29 nm CuO–water nanofluid. Negligible migration of nanoparticles due to temperature gradient decreases the concentration of the fluid throughout the domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.