Abstract

In the present investigation, a numerical analysis has been carried out for steady two dimensional MHD free convective boundary layer flows of electrically conducting nanofluids past a uniformly stretching sheet through porous media with radiation absorption, heat generation/absorption, thermal radiation, chemical reaction, thermo-diffusion and diffusion – thermo effects. We considered two types of nanofluids namely MgO-water and CuO-water. The mathematical model was governed by a system of linear and non-linear partial differential equations with prescribed boundary conditions. The governing boundary-layer equations are first transformed into a system of coupled nonlinear ordinary differential equations using similarity variables. The transformed equations were solved numerically by the shooting method with Runge-Kutta scheme. Finally the effects of various dimensionless governing parameters like magnetic field parameter, chemical reaction parameter, thermal radiation parameter, radiation absorption parameter, heat generation parameter, Dufour number, Soret number, volume fraction of the nanoparticles and shape of the nanoparticles on velocity, temperature and concentration profiles along with the friction factor, local Nusselt and Sherwood numbers are thoroughly studied and explicitly explained in tabular form.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.