Abstract
Lignin-derived compounds (LDCs) biological funneling for polyhydroxyalkanoate (PHA) synthesis has been attractive but elusive. Herein, the Halomonas sp. Y3 is isolated and developed for PHA production from LDCs. Of the tested 13 LDCs, 4-hydroxybenzoic acid (4-HBA), protocatechuate (PA), catechol (CAT), and vanillic acid (VA) exhibit a hyper-degradation and production with 87.2 %, 85.8 %, 84.7 %, and 83.4 % TOC removal rate and 535.2 mg/L, 506.5 mg/L, 435.6 mg/L, and 440.8 mg/L PHA concentration, respectively. The Halomonas sp. Y3 genome is sequenced by identifying numerous genes responsible for LDCs funneling, stress response, and PHA biosynthesis. An open unsterilized fermentation with optimal conditions of pH 9.0 and NaCl 60 g/L is investigated, achieving a completely aseptic effect and significantly improved PHA production from LDCs. Overall, the results indicate that the Halomonas sp. Y3 is an ideal candidate for LDC bioconversion and exhibits a great potential to realize black liquor valorization.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.