Abstract

This study addresses an adaptive neural funnel fault-tolerant control problem for a class of strict-feedback nonlinear systems with actuator faults and input dead zone. To guarantee the boundedness of the tracking error, a modified transformation for funnel error is devised and incorporated into the control design process. To manage unknown nonlinear functions, radial basis function neural networks (RBFNN) are employed in designing an adaptive neural funnel fault-tolerant controller through the backstepping technique. The proposed controller guarantees the output tracking error stays within a predefined funnel, and all signals in the closed-loop system are semiglobally uniformly ultimately bounded (SGUUB). Finally, simulations of a rigid robot manipulator system and an inverted pendulum system are conducted to validate the practicality and effectiveness of the proposed control method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.