Abstract

Human serum, human transferrin (TF), and the iron chelator 1,10-phenanthroline (OP) produce iron-reversible fungistatic activity which has been attributed to simple iron deprivation. In this study, the influence of the size of the inoculum on the inhibitory activity of serum, TF, and OP prepared with the same iron-binding capacity (2.5 micrograms/ml) for Rhizopus oryzae and Trichophyton mentagrophytes was examined. Inhibition was monitored in liquid microcultures maintained at 37 degrees C and pH 7.4 to 7.5 by measuring the change in absorbance density. Increasing the number of spores in the inoculum disrupted the fungistatic activity of serum and TF, but not that of OP. The dilution at which OP lost fungistatic activity was not affected by the number of spores in the inoculum and was the same for both fungi. The dilution at which TF and serum lost fungistatic activity was dependent upon both the quantity of the inoculum and the species of fungus. The number of viable spores, rather than the total number of spores in the inoculum, was determined to be important in overcoming the inhibition of fungal growth by serum and TF. The fungistatic activity of serum and TF could be diminished by the preexposure of the serum to viable but nongrowing spores. Direct and indirect fluorescence studies indicated that both T. mentagrophytes and R. oryzae absorbed TF. Glucose uptake by R. oryzae was inhibited by a 4-h exposure to 5.0 to 0.15 mg of apotransferrin per ml. These results suggest that the fungistatic activity of TF for R. oryzae and T. mentagrophytes may not be attributable to simple iron deprivation and raise the possibility of a requirement for a direct interaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call