Abstract
Fungal symbionts can improve plant tolerance to salt stress. However, the interaction of epiphytic Fusarium oxysporum and Fusarium fujikuroi with the tolerance of the invasive plant Ipomoea cairica against saline coastal habitats is largely unknown. This study aimed to investigate the interaction of the mixture of the two epiphytic fungi with salt tolerance of I. cairica. Surface-sterilized I. cairica cuttings inoculated (E+) and non-inoculated (E-) with the fungal mixture were cultivated with 2, 3, and 5 parts per thousand (PPT) of NaCl solutions to simulate mild, moderate, and severe salt stress, respectively. The hydroponic experiment showed that the growth inhibition and peroxidation damages of E+ and E- cuttings were aggravated with salinity. Noteworthily, E+ cuttings had higher peroxidase (POD) and catalase (CAT) activities, chlorophyll content, total biomass, aboveground biomass, total shoot length and secondary shoot number, but lower root-to-shoot ratio than E- cuttings under 2 and 3 PPT NaCl conditions. Moreover, E+ had higher superoxide dismutase (SOD) activity and proline content but lower belowground biomass and malondialdehyde (MDA) content than E- cuttings under 3 PPT NaCl condition. However, lower SOD, POD, and CAT activities, and chlorophyll content, but higher MDA content occurred in E+ cuttings than in E- cuttings under 5 PPT NaCl condition. These findings suggested that the mixture of the two epiphytic fungi increased salt tolerance of I. cairica mainly through increasing its antioxidation ability and chlorophyll stability under mildly and moderately saline conditions, but decreased salt tolerance of this plant in an opposite way under severely saline conditions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have