Abstract

The global concern regarding the health risk associated with airborne microorganisms has prompted research in this field. However, there is a lack of systematic investigation into the particle-size distribution of airborne bacterial and fungal communities associated with seasons, which determines where they are deposited in the human respiratory tract. To address this gap, we conducted a study in Nanchang, located in central China, where we collected both coarse and fine particles during summer and winter seasons. The results demonstrated that microbial community exhibited obvious seasonal and particle-size variations except bacterial community in fine particles. Certain taxa (e.g., Bacteroidales, Ktedonobacterales, Capnodiales) displayed either seasonal and/or particle-size preferences. Furthermore, airborne microorganisms in coarse particles were more sensitive to season and particle size compared to those in fine particles, with fungal community being more susceptible than bacterial community. The susceptibility can be attributed to their high vulnerability to air pollutants and meteorological conditions, primarily PM2.5 and PM10. Additionally, a greater relative abundance of pathogenic fungi was observed in fine particles, even though microbial diversity in coarse particles was noticeably higher than that in fine particles. Furthermore, some predominant pathogens such as Alternaria, Nigrospora, and Escherichia-Shigella not only had particle size and/or seasonal preferences, but also were strongly correlated with environmental factors. This study advances our understanding of atmospheric pathogenic microorganisms and highlights the fungal health threat.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call