Abstract

BackgroundBats are important long-distance dispersers of many tropical plants, yet, by consuming fruits, they may disperse not only the plant’s seeds, but also the mycobiota within those fruits. We characterized the culture-dependent and independent fungal communities in fruits of Ficus colubrinae and feces of Ectophylla alba to determine if passage through the digestive tract of bats affected the total mycobiota.ResultsUsing presence/absence and normalized abundance data from fruits and feces, we demonstrate that the fungal communities were significantly different, even though there was an overlap of ca. 38% of Amplicon Sequence Variants (ASVs). We show that some of the fungi from fruits were also present and grew from fecal samples. Fecal fungal communities were dominated by Agaricomycetes, followed by Dothideomycetes, Sordariomycetes, Eurotiomycetes, and Malasseziomycetes, while fruit samples were dominated by Dothideomycetes, followed by Sordariomycetes, Agaricomycetes, Eurotiomycetes, and Laboulbeniomycetes. Linear discriminant analyses (LDA) show that, for bat feces, the indicator taxa include Basidiomycota (i.e., Agaricomycetes: Polyporales and Agaricales), and the ascomycetous class Eurotiomycetes (i.e., Eurotiales, Aspergillaceae). For fruits, indicator taxa are in the Ascomycota (i.e., Dothideomycetes: Botryosphaeriales; Laboulbeniomycetes: Pyxidiophorales; and Sordariomycetes: Glomerellales). In our study, the differences in fungal species composition between the two communities (fruits vs. feces) reflected on the changes in the functional diversity. For example, the core community in bat feces is constituted by saprobes and animal commensals, while that of fruits is composed mostly of phytopathogens and arthropod-associated fungi.ConclusionsOur study provides the groundwork to continue disentangling the direct and indirect symbiotic relationships in an ecological network that has not received enough attention: fungi-plants-bats. Findings also suggest that the role of frugivores in plant-animal mutualistic networks may extend beyond seed dispersal: they may also promote the dispersal of potentially beneficial microbial symbionts while, for example, hindering those that can cause plant disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.