Abstract
Early-stage detection of neurodegenerative diseases is crucial for effective clinical treatment. However, current diagnostic methods are expensive and time-consuming. In this study, we present FundusNet, a deep-learning model trained on fundus images, for rapid and cost-effective diagnosis of neurodegenerative diseases. FundusNet achieved superior performance in age prediction (MAE 2.55 year), gender classification (AUC 0.98), and neurodegenerative disease diagnosis—Parkinson’s disease AUC 0.75 ± 0.03, multiple sclerosis AUC 0.77 ± 0.02. Grad-CAM was used to identify which part of the image contributes to diagnosis. Imaging biomarker interpretation demonstrated that FundusNet effectively identifies clinical retina structures associated with diseases. Additionally, the model’s high accuracy in predicting genetic risk suggests that its performance could be further enhanced with larger training datasets.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have