Abstract

This paper presents the detailed turbulent kinetic energy budget and higher order statistics of flow behind a surface-mounted rib with and without superimposed acoustic excitation. Pattern recognition technique is used to determine the large-scale structure magnitude. It is observed that most of the turbulence contributions after the reattachment region are from the large-scale structures contrary to the belief that mostly random turbulent structures are present after reattachment. The dissipation is not a small-scale phenomena only. It may result due to the interaction between large-scale structures. From the results of higher order moments, the outer edge of the shear layer is observed to be non-Gaussian in nature with significant deviation from the Gaussian skewness and flatness value. The kinetic energy budget results show positive intermodal production in the outer edge of the shear layer indicating the presence of back scattering. The non-Gaussian velocity distribution, ejection motions and back-scattering present in the outer shear layer may be conjectured to be correlated with each other.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call