Abstract

Tert-butyl peroxide (TBPO) is a typical organic peroxide that has caused many thermal runaway reactions and explosions. Due to unknown and insufficient hazard information, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were employed to determine the fundamental thermokinetic parameters that involve exothermic onset temperature (T0), heat of decomposition (ΔHd), and other safety parameters exclusively for loss prevention of runaway reactions and thermal explosions from a reactor. Frequency factor (A) and activation energy (Ea) were calculated by Kissinger method and Ozawa method via DSC experimental data. In view of loss prevention, calorimetric applications and model evaluation to integrate thermal hazard development were adequate means for inherently safer design. Key-words. tert-butyl peroxide (TBPO), differential scanning calorimetry (DSC), exothermic onset temperature (T0), heat of decomposition (ΔHd), activation energy (Ea)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call