Abstract

Tert-butyl peroxide (TBPO), is a typical organic peroxides (OPs),which is widely applied as initiator in poly-glycidyl methacrylate (PGMA) reaction, and is employed to provide a free-radical in frontal polymerization, and which has also caused many thermal runaway reactions and explosions worldwide. To find an unknown and insufficient hazard information for an energetic material, differential scanning calorimetry (DSC) and vent sizing package 2 (VSP2) were employed to detect the fundamental thermokinetic parameters involving the exothermic onset temperature (T 0), heat of decomposition (ΔH d), temperature rise rate (dT · dt −1), time to maximum rate under adiabatic situation (TMRad), pressure rise rate (dP · dt −1), and maximum pressure (P max), etc. The T 0 was calculated to be 130 °C using DSC and VSP2. Activation energy (E a) of TBPO was evaluated to be 136 kJ mol−1 by VSP2. In view of the loss prevention, calorimetric applications and model evaluation to integrate thermal hazard development are adequate means for inherently safer design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.