Abstract
AbstractThis study proposes a probabilistic model for earthquake ground motion prediction, named ground motion generation model, which can generate ground motion time history data directly. The ground motion generation model is based on a data‐driven technique called generative adversarial networks, allowing generation of ground motion time history data without making assumptions about physical or statistical models. A method to quantitatively and qualitatively evaluate the performance of constructed model is also proposed and the ground motion generation model is optimized for high performance from earthquake engineering and deep learning perspectives. Numerical experiments show that our proposed model is probabilistic, approximating the probabilistic distribution of the dataset of observed records and generating realistic ground motion time histories with various characteristics in the time and frequency domains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.