Abstract

Mechanical holding systems of a wafer might cause serious problems in the semiconductor industry. Electrostatic wafer handling might be one of the possible solutions for such problems. The authors have investigated an attractive force on a silicon wafer by using an electrostatic chuck which consists of interdigitated electrodes and a dielectric thin film. Electrostatic attractive force increases as the applied voltage increases, and with a thinner dielectric layer. With the narrower width and spacing of interdigitated electrodes, the stronger electrostatic force is obtained. When 1-mm width and spacing interdigitated electrodes and 50-/spl mu/m-thick polymer film are used, the strongest force obtained was about 17 N in the vertical direction at 3.5 kV, for a 4-in silicon wafer. When DC high voltage is used, some residual force remains, even after the applied voltage is removed. This was overcome by using variable-frequency AC high voltage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.