Abstract

This article explores basic statistical concepts of clinical trial design and diagnostic testing, or how one starts with a question, formulates it into a hypothesis on which a clinical trial is then built, and integrates it with statistics and probability, such as determining the probability of rejecting the null hypothesis when it is actually true (type I error) and the probability of failing to reject the null hypothesis when it is false (type II error). There are a variety of tests for different types of data, and the appropriate test must be chosen for which the sample data meet the assumptions. Correcting type I error in the presence of multiple testing is needed to control the error's inflation. Within diagnostic testing, identifying false-positive and false-negative results is critical to understanding the performance of a test. These are used to determine the sensitivity and specificity of a test along with the test's negative predictive value and positive predictive value. These quantities, specifically sensitivity and specificity, are used to determine the accuracy of a diagnostic test using receiver-operating-characteristic curves. These concepts are briefly introduced to provide a basic understanding of clinical trial design and analysis, with references to allow the reader to explore various concepts at a more detailed level if desired.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.