Abstract

AbstractA new boundary element procedure is developed for the solution of the streamfunction–vorticity formulation of the Navier–Stokes equations in two dimensions. The differential equations are stated in their transient version and then discretized via finite differences with respect to time. In this discretization, the non‐linear inertial terms are evaluated in a previous time step, thus making the scheme explicit with respect to them. In the resulting discretized equations, fundamental solutions that take into account the coupling between the equations are developed by treating the non‐linear terms as in homogeneities. The resulting boundary integral equations are solved by the regular boundary element method, in which the singular points are placed outside the solution domain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.