Abstract
AbstractThe Boundary Element Method is now well established as a valid numerical technique for the solution of field problems, equal to the Finite Element Method in generality and surpassing it in computational efficiency in some cases.1 In this paper is presented a 'Regular Boundary Element Method' as applied to inviscid laminar fluid flow problems. It involves the formation of a system of regular integral equations obtained by moving the singularity outside the domain of the given problem. It is also shown that non‐conforming elements may be used whereby freedoms are not defined at the geometric nodes under the boundary element discretization. A linear element is developed here; higher order variants could easily be defined. Satisfactory numerical results have been obtained using the proposed regular method with both conventional (continuous across the boundary) and non‐conforming boundary elements for two‐dimensional inviscid laminar fluid flow problems having regular and singular solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Fluids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.