Abstract
This first chapter deals with those parts of lattice theory which are used later. It essentially contains only elementary results. A reader with some basic knowledge of lattice theory can go directly to Chapter 2. Then he can look up those parts of Chapter 1 with which he might feel not familiar enough, whenever references are stated. For this book, the most important example is the lattice of subspaces of a projective geometry. The verification that it has the various properties introduced and discussed in this chapter has to be postponed until projective geometries will be available in Chapter 2. In order to understand this chapter, some knowledge of posets, i.e. partially ordered sets, is necessary. In particular, the following notions are supposed to be known: partial and total order on a given set, upper and lower bounds, greatest and smallest elements, maximal and minimal elements. Finally, Zorn’s Lemma will be formulated, but not proved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.