Abstract
Recent advances in fundamental performance limits for power quantities based on Lagrange duality are proving to be a powerful theoretical tool for understanding electromagnetic wave phenomena. To date, however, in any approach seeking to enforce a high degree of physical reality, the linearity of the wave equation plays a critical role. In this manuscript, we generalize the current quadratically constrained quadratic program framework for evaluating linear photonics limits to incorporate nonlinear processes under the undepleted pump approximation. Via the exemplary objective of enhancing second harmonic generation in a (free-form) wavelength-scale structure, we illustrate a model constraint scheme that can be used in conjunction with standard convex relaxations to bound performance in the presence of nonlinear dynamics. Representative bounds are found to anticipate features observed in optimized structures discovered via computational inverse design. The formulation can be straightforwardly modified to treat other frequency-conversion processes, including Raman scattering and four-wave mixing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.