Abstract
'The objective of this research program is to provide fundamental scientific information on the physical and chemical properties of solutes in aqueous solutions at high temperatures needed to assess and enhance the applicability of hydrothermal oxidation (HTO) to the remediation of DOE hazardous and mixed wastes. Potential limitations to the use of HTO technology include formation of deposits (scale) from precipitation of inorganic solutes in the waste, corrosion arising from formation of strong acids on oxidation of some organic compounds (e.g., chlorinated hydrocarbons), and unknown effects of fluid density and phase behavior at high temperatures. Focus areas for this project include measurements of the solubility and speciation of actinides and surrogates in model HTO process streams at high temperatures, and the experimental and theoretical development of equations of state for aqueous mixtures under HTO process conditions ranging above the critical temperature of water. A predictive level of understanding of the chemical and physical properties of HTO process streams is being developed through molecular-level simulations of aqueous solutions at high temperatures. Advances in fundamental understanding of phase behavior, density, and solute speciation at high temperatures and pressures contribute directly to the ultimate applicability of this process for the treatment of DOE hazardous and mixed wastes. Research in this project has been divided into individual tasks, with each contributing to a unified understanding of HTO processing problems related to the treatment of DOE wastes. This report summarizes progress attained after slightly less than two years of this three-year project.'
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have