Abstract

Fundamental bounds on the performance of monochromatic scattering-cancellation and field-zeroing cloaks made of prescribed linear passive materials occupying a predefined design region are formulated by projecting field quantities onto a sub-sectional basis and applying quadratically constrained quadratic programming. Formulations are numerically tested revealing key physical trends as well as advantages and disadvantages between the two classes of cloaks. Results show that the use of low-loss materials with high dielectric contrast affords the highest potential for effective cloaking.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.