Abstract

Along with the rising application of high strength steel in civil engineering practice, it has become imperative to gain comprehensive understanding of the elastic and plastic behaviour of these materials under given strain or stress histories. For seismic analysis of structures in earthquake prone areas, this paper aims to analytically and theoretically study the cyclic behaviour of high strength steel tubes, with individual applications or incorporated in fabricated structural elements. Several low cycle tension-compression tests are conducted on high strength (grade 800) and ultra-high strength (grade 1200) steel coupons extracted from tubes. Parameters such as number of cycles, strain/stress amplitude and increment size are studied in the behaviour of cyclically strained material and its preserved mechanical properties. Numerical analysis is also conducted incorporating combined nonlinear hardening models. As opposed to conventional structural mild steel both grades of steels considered in this study exhibit cyclic softening with plastic straining having a more prominent strength reduction in higher strengths of steel. Cyclical damage applied on high tensile steel evidently influences the preserved mechanical properties of microstructure at fracture. Combined nonlinear plastic hardening and relevant parameters proposed in this study for two grades of high strength steel materials are calibrated and verified against hysteretic experimental results and proposed for further analytical and numerical modelling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.