Abstract
Modern-day applications need mm-scale shear-driven flow condensers. Condenser designs need to ensure large heat transfer rates for a variety of flow conditions. For this, good estimates for heat-transfer rate correlations and correlations for the length of the annular regime (beyond which plug-slug flows typically occur) are needed. For confident use of existing correlations (particularly the more recent ones supported by large data sets) for shear-pressure driven internal condensing flows, there is a great need to relate the existing correlation development approaches to direct flow-physics based fundamental results from theory, computations, and experiments. This paper addresses this need for millimeter scale shear driven and annular condensing flows. In doing so, the paper proposes/compares a few new and reliable non-dimensional heat-transfer coefficient correlations as well as a key flow regime transition criteria/correlation
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have