Abstract
From a thermodynamic point of view, all clocks are driven by irreversible processes. Additionally, one can use oscillatory systems to temporally modulate the thermodynamic flux towards equilibrium. Focusing on the most elementary thermalization events, this modulation can be thought of as a temporal probability concentration for these events. There are two fundamental factors limiting the performance of clocks: On the one level, the inevitable drifts of the oscillatory system, which are addressed by finding stable atomic or nuclear transitions that lead to astounding precision of today's clocks. On the other level, there is the intrinsically stochastic nature of the irreversible events upon which the clock's operation is based. This becomes relevant when seeking to maximize a clock's resolution at high accuracy, which is ultimately limited by the number of such stochastic events per reference time unit. We address this essential trade-off between clock accuracy and resolution, proving a universal bound for all clocks whose elementary thermalization events are memoryless.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.