Abstract
The highly precise atomic clocks used in science and technology are based on electronic transitions in atoms. The discovery of a nuclear transition in thorium-229 raises hopes of making nuclear clocks a reality. See Article p.47 The accuracy of atomic clocks, which measure time based on atomic transitions, is central to the function of systems as diverse as GPS navigation and radio astronomy. In theory, a nuclear clock based on an optical excitation of a nuclear transition, could be even better than atomic clocks in terms of stability and compactness. However, the only nuclear state with an excitation energy sufficiently low for this application is the first excited state of thorium-229. But this is arguably most exotic transition in the whole nuclear landscape, and has proven to be extremely hard to detect. Only some indirect evidence could be obtained previously. Here, based on low-energy microchannel plate detection, Lars von der Wense and colleagues achieve direct detection of the thorium-229 nuclear-clock transition, placing new limits on the transition energy and measuring the state's half-life. As well as being a step towards a nuclear clock, these results also suggest that nuclear quantum optics and nuclear lasers based on this transition may be plausible possibilities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.