Abstract
We prove a form of the cos πρ theorem which gives strong estimates for the minimum modulus of a transcendental entire function of order zero. We also prove a generalisation of a result of Hinkkanen that gives a sufficient condition for a transcendental entire function to have no unbounded Fatou components. These two results enable us to show that there is a large class of entire functions of order zero which have no unbounded Fatou components. On the other hand, we give examples which show that there are in fact functions of order zero which not only fail to satisfy Hinkkanen’s condition but also fail to satisfy our more general condition. We also give a new regularity condition that is sufficient to ensure that a transcendental entire function of order less than 1/2 has no unbounded Fatou components. Finally, we observe that all the conditions given here which guarantee that a transcendental entire function has no unbounded Fatou components also guarantee that the escaping set is connected, thus answering a question of Eremenko for such functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.