Abstract
The dehydration responsive element binding (DREB) transcription factors play an important role in plant growth and development and are extensively involved in plant responses to abiotic stress. The DREB family contains six subfamilies, and TINY belongs to the DREB-A4 subfamily. The Arabidopsis thaliana TINY gene, AtTINY, plays a role in regulating plant growth and responses to stress. In order to investigate the evolutionary characterization of the DREB-A4 subfamily and the biological function of the MdTINY gene in apple (Malus domestica), in this study, we used the databases GDDH13 and TAIR and online tools (Expasy and WoLF PSORT) to study the biological information of the DREB-A4 subfamily in apple. In addition, the tertiary structures of the proteins were predicted. The apple DREB-A4 subfamily contained 22 genes, all of which had a conserved AP2 domain, and subcellular localization predictions showed that DREB-A4 subfamily proteins were mainly located in the nucleus. The transgenic calli of MdTINY were obtained by the Agrobacterium-mediated transformation method, and the main biological functions of MdTINY were explored by quantitative real-time PCR (qRT-PCR) combined with anthocyanin content determination. MdTINY shared the highest amino acid sequence similarity with AtTINY. The coding region of MdTINY had a full length of 759 bp, encoding 252 amino acid residues. Analysis of the promoter elements and expression patterns indicated that MdTINY was responsive to light and multiple stress conditions. MdTINY was localized in the nucleus and had transcriptional autoactivation activity. The overexpression of MdTINY in calli inhibited normal growth and promoted anthocyanoside accumulation. These results indicated that MdTINY negatively regulated apple plant growth and promoted fruit coloring, providing a candidate gene for the breeding of apple varieties with high quality of fruit color.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have