Abstract

Matrix functions play an important role in applied mathematics. In network analysis, in particular, the exponential of the adjacency matrix associated with a network provides valuable information about connectivity, as well as about the relative importance or centrality of nodes. Another popular approach to rank the nodes of a network is to compute the left Perron vector of the adjacency matrix for the network. The present article addresses the problem of evaluating matrix functions, as well as computing an approximation to the left Perron vector, when only some of the columns and/or some of the rows of the adjacency matrix are known. Applications to network analysis are considered, when only some sampled columns and/or rows of the adjacency matrix that defines the network are available. A sampling scheme that takes the connectivity of the network into account is described. Computed examples illustrate the performance of the methods discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.