Abstract

An approach for analysis of biological networks is proposed. In this approach, named the connectivity matrix (CM) method, all the connectivities of interest are expressed in a matrix. Then, a variety of analyses are performed on GNU Octave or Matlab. Each node in the network is expressed as a row vector or numeral that carries information defining or characterising the node itself. Information about connectivity itself is also expressed as a row vector or numeral. Thus, connection of node n1 to node n2 through edge e is expressed as [n1, n2, e], a row vector formed by the combination of three row vectors or numerals, where n1, n2 and e indicate two different nodes and one connectivity, respectively. All the connectivities in any given network are expressed as a matrix, CM, each row of which corresponds to one connectivity. Using this CM method, intermetabolite atom-level connectivity is investigated in a model metabolic network composed of the reactions for glycolysis, oxidative decarboxylation of pyruvate, citric acid cycle, pentose phosphate pathway and gluconeogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call