Abstract
Recent advancements in cancer treatment have improved patient prognoses, but chemotherapy induced cardiotoxicity remains a prevalent concern. This study explores the potential of F-base-modified aptamers for targeted drug delivery, focusing on their impact on cardiotoxicity. From the phosphoramidite, F-base-functionalized Sgc8-F23 was prepared in an automated and programmable way, which was further reacted with paclitaxel (PTX) to give the F-base- modified aptamer Sgc8-paclitaxel conjugates (Sgc8-F23-PTX) efficiently. The conjugate exhibited prolonged circulation time and enhanced efficacy as a precision anticancer drug delivery system. Echocardiographic assessments revealed no exacerbation of cardiac dysfunction after myocardial infarction (MI) and no pathological changes or increased apoptosis in non-infarcted cardiac regions. Autophagy pathway analysis showed no discernible differences in Sgc8-F23-PTX-treated cardiomyocytes compared with controls, in contrast to the increased autophagy with nanoparticle albumin-bound-paclitaxel (Nab-PTX). Similarly, apoptosis analysis showed no significant differences. Moreover, Sgc8-F23-PTX exhibited no inhibitory effect on hERG, hNav1.5, or hCav1.2 channels. These findings suggest the safety and efficacy of F-base-modified Sgc8 aptamers for targeted drug delivery with potential clinical applications. Further research is warranted for clinical translation and exploration of other drug carriers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.