Abstract
Eco-friendly stannic oxide nanoparticles functionalized with gallic acid (SnO2/GA NP) were synthesized and employed as a novel photocatalyst for the degradation of citalopram, a commonly prescribed antidepressant drug. SnO2/GA NP were characterized using high-resolution transmission electron microscopy, Fourier transform infrared spectroscopy, Brunauer–Emmett–Teller measurements and X-ray diffraction. A validated RP-HPLC assay was developed to monitor citalopram concentration in the presence of its degradation products. Full factorial design (24) was conducted to investigate the effect of irradiation time, pH, SnO2/GA NP loading and initial citalopram concentration on the efficiency of the photodegradation process. Citalopram initial concentration was found to be the most significant parameter followed by irradiation time and pH, respectively. At optimum conditions, 88.43 ± 0.7% degradation of citalopram (25.00 µg/mL) was obtained in 1 h using UV light (1.01 mW/cm2). Citalopram kinetics of degradation followed pseudo-first order rate with Kobs and t0.5 of − 0.037 min−1 and 18.73 min, respectively. The optimized protocol was successfully applied for treatment of water samples collected during different cleaning validation cycles of citalopram production lines. The reusability of SnO2/GA NP was studied for 3 cycles without significant loss in activity. This approach would provide a green and economic alternative for pharmaceutical wastewater treatment of organic pollutants.Graphical abstract
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have