Abstract
A lithium–ion capacitor, comprising a capacitor–type cathode and battery–type anode, exhibits high power and energy density; however, the integration of different charge storage mechanisms in one cell naturally leads to a kinetic mismatch between the two electrodes, reducing the power density and cycle stability. To solve this problem, high–capacity anode materials with thinner electrodes are required. Silicon, with its high specific capacity, is considered a promising anode material with high energy and power density; however, pure Si anodes undergo rapid capacity fading and exhibit increased internal resistance owing to volume changes during cycling. In this study, both sides of the electrode are covered with functional layers consisting of functionalized herringbone–type carbon nanofibers to protect the Si electrode from degradation. The polar functional groups on the nanofibers weakly interact with the native oxide layer of the Si surface and the carboxyl groups of the binder, ensuring stable contact between electrode materials over repeated cycles. Moreover, the conductive functional cover promotes uniform lithium ion fluxes, aiding the formation of a stable solid electrolyte interphase layer. This study investigates the effects of this strategy on pure Si electrodes by surface morphology analysis, assessment of chemical interactions, and electrochemical testing. This approach has the potential to overcome the degradation of Si electrodes and significantly improve the power and energy density of lithium–ion capacitors.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have