Abstract

A composite of sulfonated waste polystyrene (SWPS) and graphene oxide was synthetized by an inverse coprecipitation in-situ compound technology. Polystyrene (PS) has a wide range of applications due to its high mechanical property. the graphene were incorporated into sulfonated polystyrene (SPS) to improve the thermal stability and mechanical performance of the composites. Functionalized graphene were synthesized with tour method by using recovered anode (graphite) of dry batteries while sulfonated waste expanded polystyrene was obtained through sulfonation of the polymer. The SPS and GO + SPS composite were characterized using by Fourier Transform Infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). While the degree of sulfonation (DS) was determined through elemental analysis. The results show the degree of sulfonation of the composite is 23.5% and its ion exchange capacity is 1.2 meq g−1. TEM analysis revealed that the GO particles were loaded on the surface of sulphonated polystyrene and that the SWPS was intercalated into the sub-layers of nanoG homogeneously, which result in an increase in electrical conduction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call