Abstract

Polystyrene (PS), one of the most used polymers in everyday life, has a low recycling rate due to its inexpensive virgin resin. In order to make polystyrene waste (WPS) recycling advantageous, it is possible to change it chemically, introducing heteroatoms in the polymer chain thus transforming the waste into a material with more added value. In this work, sulfonation reactions of polystyrene waste (disposable cups and expanded polystyrene - EPS) with different degrees of sulfonation were carried out by homogeneous sulfonation using acetylsulfate as a sulfonating agent, originating polystyrene sulfonate (PSS). The characterization of the products was done using Fourier Transformed Infrared Spectroscopy (FTIR), solubility tests and inductively coupled plasma optical emission spectroscopy (ICP-OES). Infrared spectroscopy revealed that the reaction was efficient and all the starting materials tested were successfully sulfonated and transformed into PSS. There was no distinction between the residues tested, revealing that it's possible to carry the reaction without sorting the waste. EPS was chosen as the substrate for further reactions varying the degree of sulfonation. Solubility and ICP-OES tests have shown that, by changing the synthesis conditions, it is possible to achieve different degrees of products sulfonation. As a result of the studied reactions it was found that varying the degree of sufonation it is possible to use polystyrene residues to produce PSS for different applications. Keywords: Polystyrene, Waste, Sulfonated polystyrene, Sulfonation, Recycling, Expanded polystyrene.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.