Abstract

MUTYH adenine DNA glycosylase and its homologous protein (collectively MutY) are typical DNA glycosylases with a [4Fe4S] cluster and a helix-hairpin-helix (HhH) motif in its structure. In the present work, the binding behaviors of the MutY protein to dsDNA containing different base mismatches were investigated. The type and distribution of base mismatch in the dsDNA chain were found to influence the DNA-protein binding interaction greatly. The [4Fe4S] cluster of the MutY protein is able to identify a G-A mismatch in the dsDNA chain specifically by monitoring the anomalies of charge transport in the dsDNA chain, allowing the entrance of the identified dsDNA chain into the internal cavity of the MutY protein and the strong DNA-protein binding at the HhH motif of the protein through multiple H-bonds. The dsDNA chain with a centrally located G-A mismatch is thus functionalized on mesoporous silica (MSN) via amination reaction, and the obtained dsDNA(G-A)@MSN is used as a powerful sorbent for the selective capturing of the MutY protein from complex samples. By using 0.5% NH3·H2O (m/v) as a stripping reagent, efficient isolation of the MutY protein from different cell lines and bacteria is achieved and the recovered MutY protein is demonstrated to maintain favorable DNA adenine glycosylase activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.