Abstract

Modification of T-lymphocytes, which are capable of paracellular transmigration is a promising trend in modern personalized medicine. However, the delivery of required concentrations of functionalized T-cells to the target tissues remains a problem. We describe a novel method to functionalize T-cells with magnetic nanocapsules and target them with electromagnetic tweezers. T-cells were modified with the following magnetic capsules: Parg/DEX (150 nm), BSA/TA (300 nm), and BSA/TA (500 nm). T-cells were magnetonavigated in a phantom blood vessel capillary in cultural medium and in whole blood. The permeability of tumor tissues to captured T-cells was analyzed by magnetic delivery of modified T-cells to spheroids formed from 4T1 breast cancer cells. The dynamics of T-cell motion under a magnetic field gradient in model environments were analyzed by particle image velocimetry. The magnetic properties of the nanocomposite capsules and magnetic T-cells were measured. The obtained results are promising for biomedical applications in cancer immunotherapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call